SE/CS 3003/4003/6003 Tutorial 1

Solving Linear Programs with Excel

September 18, 2015

About me

- Name: Nathan Chadder
- Email: chaddens@mcmaster.ca
- Office hours: Tuesday 12:30-1:30, ITB 115 (Advanced Optimization Lab).
- Graduated from McMaster Software Engineering (Embedded Systems) in May 2015
- First year M.A.Sc. student under supervision of Dr. Deza

Motivation

- Thus far the course has defined linear and nonlinear optimization and dealt with setting up problems, but not how to solve them.
- Excel has a built in solver for LPs (and IPs/NLPs) that we can use to find solutions to these problems before we learn the Simplex method for solving by hand.
- You may find this helpful to use in assignment 1.

Problem

- "Scheduling Postal Workers" from slide 30 of "Formulations of linear and non-linear programs" slides.
- Each postal worker works for 5 consecutive days, followed by 2 days off, repeated weekly

Day	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Demand	17	13	15	19	14	16	11

- Minimize the number of postal workers (today we will determine the Integer Programming solution)

Formulating the problem

- What are the decision variables?
- What is the objective function?
- What are the constraints?

Formulating the problem, cont.

- Decision variables: Number of workers who start their work week on a given weekday, labeled $x_{1}-x_{7}$ corresponding to Monday-Sunday.
- Objective function: Minimize $z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}$
- Constraints: $x_{1}+x_{4}+x_{5}+x_{6}+x_{7} \geq 17$ (Monday)

$$
x_{1}+x_{2}+x_{5}+x_{6}+x_{7} \geq 13 \text { (Tuesday) }
$$

$$
x_{1}+x_{2}+x_{3}+x_{6}+x_{7} \geq 15 \text { (Wednesday) }
$$

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{7} \geq 19 \text { (Thursday) }
$$

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geq 14 \text { (Friday) }
$$

$$
x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 16 \text { (Saturday) }
$$

$$
x_{3}+x_{4}+x_{5}^{4}+x_{6}+x_{7} \geq 11 \text { (Sunday) }
$$

$$
x_{i} \geq 0
$$

Assigning decision variables in Excel

- Pick cells to represent each of the decision variables.
- These may be left blank, but make a note of which cell is for which decision variable.
- In the demonstration, I have chosen cells C2 to 12 to represent x1$x 7$.
- These cell numbers will be entered into the solver and given values when a solution is found.
- You may find it helpful for organization to place all of these variables in a line, with labels in adjacent cells.

Assigning the objective function in Excel

- Pick a cell to represent the objective function.
- I've chosen D6, and given it the value "=C2+D2+E2+F2+G2+H2+I2" (minus the quotations) to represent $z=x 1+x 2+x 3+x 4+x 5+x 6+x 7$ in terms of the decision variable cells.
- Note that it is the equals sign at the start which tells Excel it is an equation.
- If no values have been given to C2-I2, D6 will now appear as 0 , and will change based on updates to those values.

Assigning the constraints in Excel

- Pick cells to represent each of the LHSs of the constraints.
- The equations for these must be entered into these cells in terms of the decision variable cells. For example, to represent " $x_{1}+x_{4}+x_{5}+x_{6}+x_{7}$," I've entered " $=C 2+F 2+G 2+H 2+12$ " into cell D10.
- For organization, I've placed these equations in cells D10-D16, and typed the equations they represent in the adjacent cells to serve as labels.

Assigning the constraints in Excel, cont.

- Pick cells to represent each of the RHSs of the constraints.
- As these are just numbers, simply type the value into a cell.
- For organization, I have chosen to enter the RHSs into cells F10-F16, and entered \geq symbols as labels into cells E10-E16, so that they clearly match up with the corresponding LHS of the constraint.

Opening Solver

- By default, the Solver tool is not enabled.
- Go to Options, click the "Add-ins" tab, select "Excel Add-ins" in the "Manage" drop down, and click "Go."
- Check "Solver Add-in" and click OK.
- Solver can now be found in the Data tab in the Analysis toolbox.

Using Solver

- Opening Solver, we get a form to tell Excel what we're trying to optimize and what the variables and conditions are.
- "Set Objective" refers to the objective function. Enter the cell reference of the objective function (in the example, I would enter D6).
- Excel seems to default to "absolute references" here, which appears as \$D\$6 instead of D6, but unless you're moving cells around at this stage, either form of reference will work.

Using Solver, cont.

- "To" is asking for how the problem is to be optimized. We will always want either a minimum or maximum. In this case, set it to "Min".
- "By Changing Variable Cells" requires a list of all the decision variables. As I have listed them in a row, I can simply type C2:I2 to reference all 7 decision variables.

Using Solver, cont.

- "Subject to the Constraints" needs us to list the constraints for the problem.
- Click "Add" to open a form to add constraints.
- For "Cell Reference", reference the LHS cell
- Our inequalities are all of the form LHS $\geq R H S$, so select $>=$ from the drop down
- For "Constraint", reference the corresponding RHS cell.
- You could also just type the RHS into the "Constraint" box, but this way I can list all my constraints in one line (D10:D16 >= F10:F16).

Using Solver, cont.

- As we're dealing with an IP problem in this case, we also need to constrain our variables to integer values.
- To do this, add another constraint, reference all of the decision variable cells, and select "Int" from the drop down.
- We should also check "Make Unconstrained Variables Non-Negative" to implement the $x_{i} \geq 0$ constraints.

Last steps

- As the objective function and constraints are linear, any of the solving methods should provide the correct result. I have selected Simplex LP, as this is the method that we will learn to solve by hand in the coming weeks.
- Pressing "Solve," we obtain the solution:
$x_{1}=6, x_{2}=3, x_{3}=3, x_{4}=7, x_{5}=0, x_{6}=3, x_{7}=1, z=23$
- Note that this solution is not unique, so a different solving method may find different x_{i} values, but z will always total 23.
- If you need more clarification or examples for how to use the Excel solver tool, a tutorial can be found on the MIT opencourseware at:
http://ocw.mit.edu/courses/sloan-school-of-management/15-053-optimization-methods-in-management-science-spring-
2013/tutorials/MIT15 053S13 tut03.pdf

